Difference between revisions of "009A Sample Final 1, Problem 10"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Consider the following continuous function: ::::::<math>f(x)=x^{1/3}(x-8)</math> <span class="exam">defined on the closed, bounded interval <math style="ve...") |
|||
| Line 4: | Line 4: | ||
<span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. | <span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. | ||
| − | <span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>. | + | ::<span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>. |
| − | <span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>. | + | ::<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 13: | Line 13: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | + | | |
| + | ::'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | ||
|- | |- | ||
| | | | ||
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ||
|- | |- | ||
| − | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | + | | |
| + | ::'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | ||
|- | |- | ||
| | | | ||
| Line 55: | Line 57: | ||
::<math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | ::<math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | ||
|- | |- | ||
| − | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> | + | |We cross multiply to get |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: 1px">-3x=x-8.</math> | ||
|- | |- | ||
|Solving, we get <math style="vertical-align: -1px">x=2.</math> | |Solving, we get <math style="vertical-align: -1px">x=2.</math> | ||
Revision as of 11:28, 18 April 2016
Consider the following continuous function:
defined on the closed, bounded interval .
- a) Find all the critical points for .
- b) Determine the absolute maximum and absolute minimum values for on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-8,8]} .
| Foundations: |
|---|
| Recall: |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| To find the critical points, first we need to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x).} |
| Using the Product Rule, we have |
|
| Step 2: |
|---|
| Notice Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} is undefined when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.} |
| Now, we need to set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0.} |
| So, we get |
|
| We cross multiply to get |
|
| Solving, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2.} |
| Thus, the critical points for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6)).} |
(b)
| Step 1: |
|---|
| We need to compare the values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} at the critical points and at the endpoints of the interval. |
| Using the equation given, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-8)=32} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(8)=0.} |
| Step 2: |
|---|
| Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 32} |
| and the absolute minimum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6))} |
| (b) The absolute minimum value for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).} |