Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>, | <span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>, | ||
− | <span class="exam">a) Find the intervals in which the function increases or decreases. | + | ::<span class="exam">a) Find the intervals in which the function increases or decreases. |
− | <span class="exam">b) Find the local maximum and local minimum values. | + | ::<span class="exam">b) Find the local maximum and local minimum values. |
− | <span class="exam">c) Find the intervals in which the function concaves upward or concaves downward. | + | ::<span class="exam">c) Find the intervals in which the function concaves upward or concaves downward. |
− | <span class="exam">d) Find the inflection point(s). | + | ::<span class="exam">d) Find the inflection point(s). |
− | <span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. | + | ::<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 16: | Line 16: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' <math style="vertical-align: -5px">f(x)</math>  is increasing when <math style="vertical-align: -5px">f'(x)>0</math>  and <math style="vertical-align: -5px">f(x)</math>  is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math> | + | | |
+ | ::'''1.''' <math style="vertical-align: -5px">f(x)</math>  is increasing when <math style="vertical-align: -5px">f'(x)>0</math>  and <math style="vertical-align: -5px">f(x)</math>  is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math> | ||
|- | |- | ||
− | |'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum. | + | | |
+ | ::'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum. | ||
|- | |- | ||
− | |'''3.''' <math style="vertical-align: -5px">f(x)</math>  is concave up when <math style="vertical-align: -5px">f''(x)>0</math>  and <math style="vertical-align: -5px">f(x)</math>  is concave down when <math style="vertical-align: -5px">f''(x)<0.</math> | + | | |
+ | ::'''3.''' <math style="vertical-align: -5px">f(x)</math>  is concave up when <math style="vertical-align: -5px">f''(x)>0</math>  and <math style="vertical-align: -5px">f(x)</math>  is concave down when <math style="vertical-align: -5px">f''(x)<0.</math> | ||
|- | |- | ||
− | |'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math> | + | | |
+ | ::'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math> | ||
|} | |} | ||
Line 32: | Line 36: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>  We have | + | |We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>  We have |
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: -5px">f'(x)=3x^2-12x.</math> | ||
+ | |- | ||
+ | |Now, we set <math style="vertical-align: -5px">f'(x)=0.</math>  So, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -6px">0=3x(x-4).</math> | ||
|- | |- | ||
|Hence, we have <math style="vertical-align: 0px">x=0</math>  and <math style="vertical-align: -1px">x=4.</math> | |Hence, we have <math style="vertical-align: 0px">x=0</math>  and <math style="vertical-align: -1px">x=4.</math> | ||
Line 46: | Line 56: | ||
|To check whether the function is increasing or decreasing in these intervals, we use testpoints. | |To check whether the function is increasing or decreasing in these intervals, we use testpoints. | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math> | + | | |
+ | ::For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math> | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math> | + | | |
+ | ::For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math> | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math> | + | | |
+ | ::For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math> | ||
|- | |- | ||
|Thus, <math style="vertical-align: -5px">f(x)</math>  is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>  and decreasing on <math style="vertical-align: -5px">(0,4).</math> | |Thus, <math style="vertical-align: -5px">f(x)</math>  is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>  and decreasing on <math style="vertical-align: -5px">(0,4).</math> | ||
Line 76: | Line 89: | ||
|To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> | |To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> | ||
|- | |- | ||
− | |We have <math style="vertical-align: -5px">f''(x)=6x-12.</math> | + | |We have |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -5px">f''(x)=6x-12.</math> | ||
|- | |- | ||
|We set <math style="vertical-align: -5px">f''(x)=0.</math> | |We set <math style="vertical-align: -5px">f''(x)=0.</math> | ||
|- | |- | ||
− | |So, we have <math style="vertical-align: -1px">0=6x-12 | + | |So, we have |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -1px">0=6x-12.</math> | ||
|- | |- | ||
− | |This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math> | + | |Hence, <math style="vertical-align: 0px">x=2.</math> This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math> |
|} | |} | ||
Line 90: | Line 109: | ||
|Again, we use test points in these two intervals. | |Again, we use test points in these two intervals. | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=0,</math>  we have <math style="vertical-align: -5px">f''(x)=-12<0.</math> | + | | |
+ | ::For <math style="vertical-align: -5px">x=0,</math>  we have <math style="vertical-align: -5px">f''(x)=-12<0.</math> | ||
|- | |- | ||
− | |For <math style="vertical-align: -5px">x=3,</math>  we have <math style="vertical-align: -5px">f''(x)=6>0.</math> | + | | |
+ | ::For <math style="vertical-align: -5px">x=3,</math>  we have <math style="vertical-align: -5px">f''(x)=6>0.</math> | ||
|- | |- | ||
|Thus, <math style="vertical-align: -5px">f(x)</math>  is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> | |Thus, <math style="vertical-align: -5px">f(x)</math>  is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> |
Revision as of 11:23, 18 April 2016
Given the function ,
- a) Find the intervals in which the function increases or decreases.
- b) Find the local maximum and local minimum values.
- c) Find the intervals in which the function concaves upward or concaves downward.
- d) Find the inflection point(s).
- e) Use the above information (a) to (d) to sketch the graph of .
Foundations: |
---|
Recall: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of We have |
|
Now, we set So, we have |
|
Hence, we have and |
So, these values of break up the number line into 3 intervals: |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
|
|
|
Thus, is increasing on and decreasing on |
(b)
Step 1: |
---|
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at |
Step 2: |
---|
So, the local maximum value is and the local minimum value is |
(c)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find |
We have |
|
We set |
So, we have |
|
Hence, This value breaks up the number line into two intervals: |
Step 2: |
---|
Again, we use test points in these two intervals. |
|
|
Thus, is concave up on the interval and concave down on the interval |
(d) |
---|
Using the information from part (c), there is one inflection point that occurs at |
Now, we have |
So, the inflection point is |
(e) |
---|
Final Answer: |
---|
(a) is increasing on and decreasing on |
(b) The local maximum value is and the local minimum value is |
(c) is concave up on the interval and concave down on the interval |
(d) |
(e) See graph in (e). |