Difference between revisions of "009A Sample Final 1, Problem 8"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Let ::::::<math>y=x^3.</math> <span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -...")
 
Line 3: Line 3:
 
::::::<math>y=x^3.</math>
 
::::::<math>y=x^3.</math>
  
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
+
::<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
  
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
+
::<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 11:18, 18 April 2016

Let

a) Find the differential of at .
b) Use differentials to find an approximate value for .
Foundations:  
What is the differential of at
Since    the differential is  

Solution:


(a)

Step 1:  
First, we find the differential
Since   we have
Step 2:  
Now, we plug   into the differential from Step 1.
So, we get

(b)

Step 1:  
First, we find . We have  
Then, we plug this into the differential from part (a).
So, we have
Step 2:  
Now, we add the value for to    to get an
approximate value of
Hence, we have
Final Answer:  
(a)
(b)

Return to Sample Exam