Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Consider the following function: ::::::<math>f(x)=3x-2\sin x+7</math> <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="...") |
|||
Line 3: | Line 3: | ||
::::::<math>f(x)=3x-2\sin x+7</math> | ::::::<math>f(x)=3x-2\sin x+7</math> | ||
− | <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at least one zero. | + | ::<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at least one zero. |
− | <span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at most one zero. | + | ::<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at most one zero. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 12: | Line 12: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1. Intermediate Value Theorem:''' | + | |'''1. Intermediate Value Theorem:''' |
|- | |- | ||
| | | | ||
− | :: | + | ::If <math style="vertical-align: -5px">f(x)</math>  is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>  and <math style="vertical-align: -5px">f(b)</math>, |
|- | |- | ||
− | |'''2. Mean Value Theorem:''' Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: | + | | |
+ | ::then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math> | ||
+ | |- | ||
+ | |'''2. Mean Value Theorem:''' | ||
+ | |- | ||
+ | | | ||
+ | ::Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: | ||
|- | |- | ||
| | | | ||
Line 38: | Line 44: | ||
|First note that  <math style="vertical-align: -5px">f(0)=7.</math> | |First note that  <math style="vertical-align: -5px">f(0)=7.</math> | ||
|- | |- | ||
− | |Also, | + | |Also, |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math> | ||
|- | |- | ||
|Since  <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> | |Since  <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> | ||
Line 71: | Line 80: | ||
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>  Since  <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>  Since  <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> | ||
|- | |- | ||
− | |<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>  So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> | + | | |
+ | ::<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>  | ||
+ | |- | ||
+ | |So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> | ||
|- | |- | ||
− | | | + | | Thus, <math style="vertical-align: -5px">f(x)</math>  has at most one zero. |
|} | |} | ||
Revision as of 11:15, 18 April 2016
Consider the following function:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3x-2\sin x+7}
- a) Use the Intermediate Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero.
- b) Use the Mean Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero.
Foundations: |
---|
Recall: |
1. Intermediate Value Theorem: |
|
|
2. Mean Value Theorem: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
First note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=7.} |
Also, |
|
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \sin(x) \leq 1,} |
|
Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -10\leq f(-5) \leq -6} and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0.} |
Step 2: |
---|
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,} there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0} such that |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0} by the Intermediate Value Theorem. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero. |
(b)
Step 1: |
---|
Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has more than one zero. So, there exist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)=f(b)=0.} |
Then, by the Mean Value Theorem, there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.} |
Step 2: |
---|
We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3-2\cos(x).} Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1\leq \cos(x)\leq 1,} |
|
So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\leq f'(x) \leq 5,} which contradicts Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.} |
Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at most one zero. |
Final Answer: |
---|
(a) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-5)<0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)>0,} there exists Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5<x<0} such that |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0} by the Intermediate Value Theorem. Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has at least one zero. |
(b) See Step 1 and Step 2 above. |