Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Consider the following function: ::::::<math>f(x)=3x-2\sin x+7</math> <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="...") |
|||
| Line 3: | Line 3: | ||
::::::<math>f(x)=3x-2\sin x+7</math> | ::::::<math>f(x)=3x-2\sin x+7</math> | ||
| − | <span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at least one zero. | + | ::<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at least one zero. |
| − | <span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at most one zero. | + | ::<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math>  has at most one zero. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 12: | Line 12: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''1. Intermediate Value Theorem:''' | + | |'''1. Intermediate Value Theorem:''' |
|- | |- | ||
| | | | ||
| − | :: | + | ::If <math style="vertical-align: -5px">f(x)</math>  is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>  and <math style="vertical-align: -5px">f(b)</math>, |
|- | |- | ||
| − | |'''2. Mean Value Theorem:''' Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: | + | | |
| + | ::then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math> | ||
| + | |- | ||
| + | |'''2. Mean Value Theorem:''' | ||
| + | |- | ||
| + | | | ||
| + | ::Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: | ||
|- | |- | ||
| | | | ||
| Line 38: | Line 44: | ||
|First note that  <math style="vertical-align: -5px">f(0)=7.</math> | |First note that  <math style="vertical-align: -5px">f(0)=7.</math> | ||
|- | |- | ||
| − | |Also, | + | |Also, |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math> | ||
|- | |- | ||
|Since  <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> | |Since  <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> | ||
| Line 71: | Line 80: | ||
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>  Since  <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>  Since  <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> | ||
|- | |- | ||
| − | |<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>  So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> | + | | |
| + | ::<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>  | ||
| + | |- | ||
| + | |So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> | ||
|- | |- | ||
| − | | | + | | Thus, <math style="vertical-align: -5px">f(x)</math>  has at most one zero. |
|} | |} | ||
Revision as of 11:15, 18 April 2016
Consider the following function:
- a) Use the Intermediate Value Theorem to show that has at least one zero.
- b) Use the Mean Value Theorem to show that has at most one zero.
| Foundations: |
|---|
| Recall: |
| 1. Intermediate Value Theorem: |
|
|
| 2. Mean Value Theorem: |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| First note that |
| Also, |
|
|
| Since |
|
|
| Thus, and hence |
| Step 2: |
|---|
| Since and there exists with such that |
| by the Intermediate Value Theorem. Hence, has at least one zero. |
(b)
| Step 1: |
|---|
| Suppose that has more than one zero. So, there exist such that |
| Then, by the Mean Value Theorem, there exists with such that |
| Step 2: |
|---|
| We have Since |
|
|
| So, which contradicts |
| Thus, has at most one zero. |
| Final Answer: |
|---|
| (a) Since and there exists with such that |
| by the Intermediate Value Theorem. Hence, has at least one zero. |
| (b) See Step 1 and Step 2 above. |