Difference between revisions of "009A Sample Final 1, Problem 5"
Jump to navigation
Jump to search
| Line 8: | Line 8: | ||
|Recall: | |Recall: | ||
|- | |- | ||
| − | |'''The Pythagorean Theorem:''' For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the | + | | |
| + | ::'''The Pythagorean Theorem:''' | ||
| + | |- | ||
| + | | | ||
| + | ::For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the | ||
|- | |- | ||
| | | | ||
| Line 32: | Line 36: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |If  <math style="vertical-align: -4px">s=50,</math> then | + | |If  <math style="vertical-align: -4px">s=50,</math> then |
|- | |- | ||
| − | | | + | | |
| + | ::<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math> | ||
|- | |- | ||
| − | |Solving for  <math style="vertical-align: -5px">s',</math> we get | + | |So, we have |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -5px">2(40)6=2(50)s'.</math> | ||
| + | |- | ||
| + | |Solving for  <math style="vertical-align: -5px">s',</math> we get | ||
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -14px">s'=\frac{24}{5}</math>  m/s. | ||
|} | |} | ||
Revision as of 11:09, 18 April 2016
A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing
when 50 (meters) of the string has been let out?
| Foundations: |
|---|
| Recall: |
|
|
|
Solution:
| Step 1: |
|---|
| From the diagram, we have by the Pythagorean Theorem. |
| Taking derivatives, we get |
|
|
| Step 2: |
|---|
| If then |
|
|
| So, we have |
|
|
| Solving for we get |
|
| Final Answer: |
|---|
|