Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the average value of the function on the given interval. ::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math> {| class="mw-collapsible mw-collapsed" style = "...")
 
Line 7: Line 7:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.  
+
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by  
 +
|-
 +
|
 +
::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.  
 
|}
 
|}
  
Line 16: Line 19:
 
|Using the formula given in Foundations, we have:
 
|Using the formula given in Foundations, we have:
 
|-
 
|-
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
+
|
 +
::<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
 
|}
 
|}
  

Revision as of 09:40, 18 April 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by
.

Solution:

Step 1:  
Using the formula given in Foundations, we have:
Step 2:  
Now, we use -substitution. Let . Then, and . Also, .
We need to change the bounds on the integral. We have and .
So, the integral becomes .
Step 3:  
We integrate to get
   
Step 4:  
We evaluate to get
    .
Final Answer:  
   

Return to Sample Exam