Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Evaluate the integral: ::<math>\int \tan^4 x ~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- |Re...") |
|||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |Recall: |
|- | |- | ||
− | | | + | |'''1.''' <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
+ | |- | ||
+ | |'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | ||
+ | |- | ||
+ | |How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
+ | |- | ||
+ | | | ||
+ | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | ||
+ | |- | ||
+ | | | ||
+ | ::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx\,=\,\int u~du\,=\,\frac{u^2}{2}+C\,=\,\frac{\tan^2x}{2}+C.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' |
Revision as of 14:20, 8 April 2016
Evaluate the integral:
Foundations: |
---|
Recall: |
1. |
2. |
How would you integrate |
|
|
Solution:
Step 1: |
---|
First, we write . |
Using the trig identity , we have . |
Plugging in the last identity into one of the , we get |
, |
using the identity again on the last equality. |
Step 2: |
---|
So, we have . |
For the first integral, we need to use -substitution. Let . Then, . |
So, we have |
. |
Step 3: |
---|
We integrate to get |
. |
Final Answer: |
---|