Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Evaluate the integral: ::<math>\int \tan^4 x ~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- |Re...")
 
Line 8: Line 8:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-  
 
|-  
|Review <math>u</math>-substitution and
+
|Recall:
 
|-
 
|-
|trig identities
+
|'''1.''' <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 +
|-
 +
|'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 +
|-
 +
|How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 +
|-
 +
|
 +
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 +
|-
 +
|
 +
::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx\,=\,\int u~du\,=\,\frac{u^2}{2}+C\,=\,\frac{\tan^2x}{2}+C.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''

Revision as of 14:20, 8 April 2016

Evaluate the integral:


Foundations:  
Recall:
1.
2.
How would you integrate
You could use -substitution. Let Then,
Thus,


Solution:

Step 1:  
First, we write .
Using the trig identity , we have .
Plugging in the last identity into one of the , we get
   ,
using the identity again on the last equality.
Step 2:  
So, we have .
For the first integral, we need to use -substitution. Let . Then, .
So, we have
   .
Step 3:  
We integrate to get
   .
Final Answer:  
  

Return to Sample Exam