Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Evaluate the integral: ::<math>\int \sin^3x \cos^2x~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |-...") |
|||
| Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |Recall the trig identity: <math style="vertical-align: -2px">\sin^2x+\cos^2x=1.</math> |
|- | |- | ||
| − | | | + | |How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> |
| + | |- | ||
| + | | | ||
| + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> | ||
| + | |- | ||
| + | | | ||
| + | ::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx\,=\,\int u^2~du\,=\,\frac{u^3}{3}+C\,=\,\frac{\sin^3x}{3}+C.</math> | ||
|} | |} | ||
Revision as of 14:08, 8 April 2016
Evaluate the integral:
| Foundations: |
|---|
| Recall the trig identity: |
| How would you integrate |
|
|
Solution:
| Step 1: |
|---|
| First, we write . |
| Using the identity , we get . If we use this identity, we have |
| . |
| Step 2: |
|---|
| Now, we use -substitution. Let . Then, . Therefore, |
| . |
| Final Answer: |
|---|