Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
| Line 25: | Line 25: | ||
| | | | ||
|} | |} | ||
| − | + | == Temp 1 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
Revision as of 13:37, 8 February 2016
Consider the region bounded by and the -axis.
- a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate whether your rectangles overestimate or underestimate the area of .
- b) Find an expression for the area of the region as a limit. Do not evaluate the limit.
| Foundations: |
|---|
| See the page on Riemann Sums. |
Solution:
(a)
| Step 1: |
|---|
| Let . Since our interval is and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is |
| . |
Temp 1
| Step 2: |
|---|
| Thus, the left-endpoint Riemann sum is |
| . |
| The left-endpoint Riemann sum overestimates the area of . |
(b)
| Step 1: |
|---|
| Let be the number of rectangles used in the left-endpoint Riemann sum for . |
| The width of each rectangle is . |
| Step 2: |
|---|
| So, the left-endpoint Riemann sum is |
| . |
| Now, we let go to infinity to get a limit. |
| So, the area of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is equal to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}} . |
| Final Answer: |
|---|
| (a) The left-endpoint Riemann sum is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{205}{144}} , which overestimates the area of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} . |
| (b) Using left-endpoint Riemann sums: |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}} |
