Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 58: Line 58:
 
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|-
 
|-
|So, the area of <math style="vertical-align: 0px">S</math> is equal to <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)</math>.
+
|So, the area of <math style="vertical-align: 0px">S</math> is equal to <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>.
 
|}
 
|}
  
Line 66: Line 66:
 
|'''(a)''' The left-endpoint Riemann sum is <math style="vertical-align: -20px">\frac{205}{144}</math>, which overestimates the area of <math style="vertical-align: 0px">S</math>.  
 
|'''(a)''' The left-endpoint Riemann sum is <math style="vertical-align: -20px">\frac{205}{144}</math>, which overestimates the area of <math style="vertical-align: 0px">S</math>.  
 
|-
 
|-
|'''(b)''' Using left-endpoint Riemann sums: <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)</math>
+
|'''(b)''' Using left-endpoint Riemann sums:  
 +
|-
 +
| &nbsp;&nbsp; <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:49, 3 February 2016

Consider the region bounded by   and the -axis.

a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate whether your rectangles overestimate or underestimate the area of .
b) Find an expression for the area of the region as a limit. Do not evaluate the limit.


Approximation of integral with left endpoints is an overestimate.
Foundations:  
See the page on Riemann Sums.

Solution:

(a)

Step 1:  
Let . Since our interval is and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is
   .
Step 2:  
Thus, the left-endpoint Riemann sum is
   .
The left-endpoint Riemann sum overestimates the area of .

(b)

Step 1:  
Let be the number of rectangles used in the left-endpoint Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the left-endpoint Riemann sum is
   .
Now, we let go to infinity to get a limit.
So, the area of is equal to .
Final Answer:  
(a) The left-endpoint Riemann sum is , which overestimates the area of .
(b) Using left-endpoint Riemann sums:
  

Return to Sample Exam