Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Evaluate ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> ::<span...") |
|||
| Line 1: | Line 1: | ||
| − | <span class="exam"> Evaluate | + | <span class="exam"> Evaluate: |
::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> | ||
Revision as of 08:17, 3 February 2016
Evaluate:
- a)
- b)
| Foundations: |
|---|
| Review -substitution |
Solution:
(a)
| Step 1: |
|---|
| We multiply the product inside the integral to get |
| . |
| Step 2: |
|---|
| We integrate to get |
| . |
| We now evaluate to get |
| . |
(b)
| Step 1: |
|---|
| We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
| Plugging in our values into the equation , we get and . |
| Therefore, the integral becomes . |
| Step 2: |
|---|
| We now have: |
| . |
| So, we have |
| . |
| Final Answer: |
|---|
| (a) |
| (b) |