Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis.
+
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
  
 
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
 
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.

Revision as of 08:16, 3 February 2016

Consider the region bounded by   and the -axis.

a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate whether your rectangles overestimate or underestimate the area of .
b) Find an expression for the area of the region as a limit. Do not evaluate the limit.


Approximation of integral with left endpoints is an overestimate.
Foundations:  
See the page on Riemann Sums.

Solution:

(a)

Step 1:  
Let . Since our interval is and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is
   .
Step 2:  
Thus, the left-endpoint Riemann sum is
   .
The left-endpoint Riemann sum overestimates the area of .

(b)

Step 1:  
Let be the number of rectangles used in the left-endpoint Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the left-endpoint Riemann sum is
   .
Now, we let go to infinity to get a limit.
So, the area of is equal to .
Final Answer:  
(a) The left-endpoint Riemann sum is , which overestimates the area of .
(b) Using left-endpoint Riemann sums:

Return to Sample Exam