Difference between revisions of "009B Sample Midterm 2"
Jump to navigation
Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span cl...") |
(→ Problem 1 ) |
||
| Line 5: | Line 5: | ||
== [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | == [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
| − | <span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis. | + | <span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>  and the <math>x</math>-axis. |
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>. | ::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>. | ||
Revision as of 08:16, 3 February 2016
This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the
boxed problem numbers to go to a solution.
Problem 1
Consider the region Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} bounded by and the -axis.
- a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} and the rectangles and indicate whether your rectangles overestimate or underestimate the area of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} .
- b) Find an expression for the area of the region Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} as a limit. Do not evaluate the limit.
Problem 2
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt} .
- c) Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi/4}\sec^2 x~dx} .
Problem 3
Evaluate
- a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt}
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx}
Problem 4
Evaluate the integral:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx}
Problem 5
Evaluate the integral:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \tan^4 x ~dx}