Difference between revisions of "009B Sample Midterm 2, Problem 5"
From Math Wiki
Jump to navigation
Jump to search
Revision as of 22:58, 2 February 2016
(
view source
)
MathAdmin
(
talk
|
contribs
)
(Created page with "<span class="exam"> Evaluate the integral: ::<math>\int \tan^4 x ~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- |Re...")
Newer edit →
(No difference)
Revision as of 22:58, 2 February 2016
Evaluate the integral:
∫
tan
4
x
d
x
{\displaystyle \int \tan ^{4}x~dx}
Foundations:
Review
u
{\displaystyle u}
-substitution and
trig identities
Solution:
Step 1:
First, we write
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
tan
2
(
x
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)\tan ^{2}(x)~dx}
.
Using the trig identity
sec
2
(
x
)
=
tan
2
(
x
)
+
1
{\displaystyle \sec ^{2}(x)=\tan ^{2}(x)+1}
, we have
tan
2
(
x
)
=
sec
2
(
x
)
−
1
{\displaystyle \tan ^{2}(x)=\sec ^{2}(x)-1}
.
Plugging in the last identity into one of the
tan
2
(
x
)
{\displaystyle \tan ^{2}(x)}
, we get
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
(
sec
2
(
x
)
−
1
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
tan
2
(
x
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
(
sec
2
x
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)(\sec ^{2}(x)-1)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int \tan ^{2}(x)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int (\sec ^{2}x-1)~dx}
,
using the identity again on the last equality.
Step 2:
So, we have
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
(
sec
2
x
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int (\sec ^{2}x-1)~dx}
.
For the first integral, we need to use
u
{\displaystyle u}
-substitution. Let
u
=
tan
(
x
)
{\displaystyle u=\tan(x)}
. Then,
d
u
=
sec
2
(
x
)
d
x
{\displaystyle du=\sec ^{2}(x)dx}
.
So, we have
∫
tan
4
(
x
)
d
x
=
∫
u
2
d
u
−
∫
(
sec
2
(
x
)
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int u^{2}~du-\int (\sec ^{2}(x)-1)~dx}
.
Step 3:
We integrate to get
∫
tan
4
(
x
)
d
x
=
u
3
3
−
(
tan
(
x
)
−
x
)
+
C
=
tan
3
(
x
)
3
−
tan
(
x
)
+
x
+
C
{\displaystyle \int \tan ^{4}(x)~dx={\frac {u^{3}}{3}}-(\tan(x)-x)+C={\frac {\tan ^{3}(x)}{3}}-\tan(x)+x+C}
.
Final Answer:
tan
3
(
x
)
3
−
tan
(
x
)
+
x
+
C
{\displaystyle {\frac {\tan ^{3}(x)}{3}}-\tan(x)+x+C}
Return to Sample Exam
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information