Difference between revisions of "022 Exam 2 Sample A"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
  
 
== [[022_Exam_2_Sample_A,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[022_Exam_2_Sample_A,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">Find the derivative of &thinsp;<math style="vertical-align: -42%">y\,=\,\ln \frac{(x+5)(x-1)}{x}.</math>
+
<span class="exam">Find the derivative of &thinsp;<math style="vertical-align: -13px">y\,=\,\ln \frac{(x+5)(x-1)}{x}.</math>
  
 
== [[022_Exam_2_Sample_A,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[022_Exam_2_Sample_A,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
Line 34: Line 34:
 
<span class="exam">
 
<span class="exam">
 
'''Use calculus to set up and solve the word problem:''' Find the length and width of a rectangle that has a perimeter of 48 meters and maximum area.
 
'''Use calculus to set up and solve the word problem:''' Find the length and width of a rectangle that has a perimeter of 48 meters and maximum area.
 +
 +
 +
'''Contributions to this page were made by [[Contributors|John Simanyi]]'''

Latest revision as of 10:39, 28 July 2015

This is a sample, and is meant to represent the material usually covered in Math 22 for the second exam. An actual test may or may not be similar. Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find the derivative of  

 Problem 2 

Find the antiderivative of 

 Problem 3 

Find the antiderivative of

 Problem 4 

Find the antiderivative of

 Problem 5 

Set up the equation to solve. You only need to plug in the numbers - not solve for particular values!

How much money would I have after 6 years if I invested $3000 in a bank account that paid 4.5% interest,

(a) compounded monthly?
(b) compounded continuously?

 Problem 6 

Find the area under the curve of    between and .

 Problem 7 

Find the quantity that produces maximum profit, given the demand function and cost function .

 Problem 8 

Use differentials to approximate the change in profit given   units and   units, where profit is given by .

 Problem 9 

Find all relative extrema and points of inflection for the function . Be sure to give coordinate pairs for each point. You do not need to draw the graph.

 Problem 10 

Use calculus to set up and solve the word problem: Find the length and width of a rectangle that has a perimeter of 48 meters and maximum area.


Contributions to this page were made by John Simanyi